Skip to main content

Standard Integration Techniques

U Substitution

The u substitution method is useful for integrals involving a composite function. It follows the principle that:

f(g(x))g(x)dx=f(u)du\int f(g(x)) \cdot g'(x) \, dx = \int f(u) \, du

where u=g(x)u = g(x) and du=g(x)dxdu = g'(x)dx. This technique is also applicable without limits for indefinite integrals.

Example

For the integral 125x2cos(x3)dx\int_1^2 5x^2 \cos(x^3) \, dx, we set u=x3u = x^3 which gives us du=3x2dxdu = 3x^2 \, dx. The limits are also changed accordingly to uu values. The integral simplifies to:

1853cos(u)du=[53sin(u)]18=53(sin(8)sin(1))\int_1^8 \frac{5}{3} \cos(u) \, du = \left[ \frac{5}{3} \sin(u) \right]_1^8 = \frac{5}{3} (\sin(8) - \sin(1))

Products and Quotients of Trig Functions

For Products

When integrating products of sine and cosine, consider the following strategies based on the powers of sine and cosine:

  • If the power of sine is odd, move one sine out and convert the rest to cosines using sin2(x)=1cos2(x)\sin^2(x) = 1 - \cos^2(x).
  • If the power of cosine is odd, move one cosine out and convert the rest to sines using cos2(x)=1sin2(x)\cos^2(x) = 1 - \sin^2(x).
  • If both powers are odd, use the above strategies.
  • If both powers are even, use double angle or half angle formulas.

For Quotients

When integrating products of tangent and secant, the strategies are as follows:

  • If the power of tangent is odd, save one tangent and convert the rest to secants.
  • If the power of secant is even, save one secant and convert the rest to tangents.
  • Use appropriate substitutions such as u=tan(x)u = \tan(x) or u=sec(x)u = \sec(x) depending on the scenario.

Example - Products

For the integral tan3(x)sec5(x)dx\int \tan^3(x) \sec^5(x) \, dx, use u=sec(x)u = \sec(x), du=sec(x)tan(x)dxdu = \sec(x)\tan(x) \, dx. This leads to:

u4(u21)du=(u6u4)du\int u^4(u^2 - 1) \, du = \int (u^6 - u^4) \, du

After integration, revert back to xx:

17sec7(x)15sec5(x)+C\frac{1}{7} \sec^7(x) - \frac{1}{5} \sec^5(x) + C

Example - Quotients

For the integral sin3(x)cos3(x)dx\int \frac{\sin^3(x)}{\cos^3(x)} \, dx, use the identity sin2(x)=1cos2(x)\sin^2(x) = 1 - \cos^2(x) and the substitution u=cos(x)u = \cos(x):

(1cos2(x))sin(x)cos3(x)dx=(1u21u4)du\int \frac{(1 - \cos^2(x))\sin(x)}{\cos^3(x)} \, dx = \int \left( \frac{1}{u^2} - \frac{1}{u^4} \right) \, du

After integrating and reverting back to xx:

12sec2(x)+2lncos(x)+12cos2(x)+C\frac{1}{2} \sec^2(x) + 2 \ln |\cos(x)| + \frac{1}{2} \cos^2(x) + C

Trig Formulas

The trigonometric formulas useful in these integrations include:

sin(2x)=2sin(x)cos(x)\sin(2x) = 2 \sin(x) \cos(x) cos(2x)=12sin2(x)\cos(2x) = 1 - 2 \sin^2(x) sin2(x)=12(1cos(2x))\sin^2(x) = \frac{1}{2}(1 - \cos(2x))